Patients with unsolved congenital disorders of glycosylation type II can be subdivided in six distinct biochemical groups.
نویسندگان
چکیده
Defects in the biosynthesis of N- and core 1 O-glycans may be found by isoelectric focusing (IEF) of plasma transferrin and apolipoprotein C-III (apoC-III). We hypothesized that IEF of transferrin and apoC-III in combination with sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of apoC-III may provide a classification for congenital disorders of glycosylation (CDG) patients. We analyzed plasma from 22 patients with eight different and well-characterized CDG subtypes and 19 cases with unsolved CDG. Transferrin IEF (TIEF) has been used to distinguish between N-glycan assembly (type 1 profile) and processing (type 2 profile) defects. We differentiated two different CDG type 2 TIEF profiles: The "asialo profile" characterized by elevated levels of asialo- and monosialotransferrin and the "disialo profile" characterized by increased levels of disialo- and trisialotransferrin. ApoC-III IEF gave two abnormal profiles ("apoC-III(0)" and "apoC-III(1)" profiles). The results for the eight established CDG forms exactly matched the theoretical expectations, providing a validation for the study approach. The combination of the three electrophoretic techniques was not additionally informative for the CDG-Ix patients as they had normal apoC-III IEF patterns. However, the CDG-IIx patients could be further subdivided into six biochemical subgroups. The robustness of the methodology was supported by the fact that three patients with similar clinical features ended in the same subgroup and that another patient, classified in the "CDG-IIe subgroup," turned out to have a similar defect. Dividing the CDG-IIx patients in six subgroups narrows down drastically the options of the primary defect in each of the subgroups and will be helpful to define new CDG type II defects.
منابع مشابه
Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing.
Congenital disorders of glycosylation type I (CDG-I) form a growing group of recessive neurometabolic diseases. Identification of disease genes is compromised by the enormous heterogeneity in clinical symptoms and the large number of potential genes involved. Until now, gene identification included the sequential application of biochemical methods in blood samples and fibroblasts. In geneticall...
متن کاملEffect of synbiotic supplementation on weight, body mass index and blood sugar in type II diabetic patients
Obesity disrupts glucose homeostasis by metabolic disorders. Probiotics are nutritional and medicinal potential to control obesity and its related disorders. This study was aimed to investigate effects of synbiotic supplementation on weight, Body Mass Index (BMI) and blood sugar in type II diabetic patients. This clinical double-blind trial study was done on 43 (15 males and 28 females) type II...
متن کاملDetailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis.
The fundamental importance of correct protein glycosylation is abundantly clear in a group of diseases known as congenital disorders of glycosylation (CDGs). In these diseases, many biological functions are compromised, giving rise to a wide range of severe clinical conditions. By performing detailed analyses of the total serum glycoproteins as well as isolated transferrin and IgG, we have dire...
متن کاملDeficiency of UDP-galactose:N-acetylglucosamine β-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId
The congenital disorders of glycosylation (CDGs) comprise a rapidly growing group of inherited multisystemic disorders that are commonly associated with severe psychomotor and mental retardation. The characteristic biochemical feature of CDGs is the defective glycosylation of glycoproteins due to mutations in genes required for the biosynthesis of N-linked oligosaccharides. Defects of the assem...
متن کاملPlasma N-glycan profiling by mass spectrometry for congenital disorders of glycosylation type II.
BACKGROUND Determination of the genetic defect in patients with a congenital disorder of glycosylation (CDG) is challenging because of the wide clinical presentation, the large number of gene products involved, and the occurrence of secondary causes of underglycosylation. Transferrin isoelectric focusing has been the method of choice for CDG screening; however, improved methods are required for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Glycobiology
دوره 15 12 شماره
صفحات -
تاریخ انتشار 2005